
ANL/MCS-TM-208

Users Manual for bfort:
Producing Fortran Interfaces to C Source Code

by

William Gropp
Mathematics and Computer Science Division

A

� R

� G

� O

� N

� N

� E

�
N

�
A

� T
	

I

O

�
N� A

L� L� A� B� O� R� A�

T� O�

R�

Y�

U�

N�

I� V� E� R� S� I T! Y" O# F
$

 C
% H

& I
' C

(A

) G

* O

+•

•

MATHEMATICS AND
COMPUTER SCIENCE

DIVISION

Users Manual for bfort:
Producing Fortran Interfaces to C Source Code

by

William Gropp

Abstract

In many applications, the most natural computer language to write in may be different from the most
natural language to provide a library in. For example, many scientific computing applications are written
in Fortran, while many software libraries—particularly those dealing with complicated data structures or
dynamic memory management—are written in C. Providing an interface so that Fortran programs can call
routines written in C can be a tedious and error-prone process. We describe here a tool that automatically
generates a Fortran-callable wrapper for routines written in C, using only a small, structured comment
and the declaration of the routine in C. This tool has been used on two large software packages, PETSc
and the MPICH implementation of MPI.

1

1 Introduction

The program described in this report is intended to help you create interfaces to routines written in C that
are callable from Fortran. Specifically, the program bfort takes files containing C programs and generates a
new file for each routine that contains a C routine, callable from Fortran, that will correctly call the original
C routine. The interface, often called a wrapper routine or just wrapper, handles the issues of Fortran
routine name, variables passed by value instead of reference, and values generated and returned by the C
library that are pointers to opaque objects.

2 Getting Started

Using bfort is easy. For example, the command

bfort foo.c

will generate Fortran interfaces for all of the commented routines in the file ‘foo.c’. But before this will do
you any good, you will need to add some structured comments to your file.

3 Structured Comments

The program bfort searches for C comments of the form /*c ... c*/, where c is a single character indicating
the type of documentation. The available types include @ for routines and M for C macros. These structured
comments can be used by doctext [2] to automatically generate manual pages and may containing additional
information. In all cases, the structured comment has the form

/*@
name - short description

heading 1:

heading 2:

...
@*/

The structured comment for a routine must immediately precede the declaration of the routine (currently
only K&R-style declarations; ANSI-style prototypes will be supported in a later release). Figure 1 shows
the structured comment and the routine being documented.

3.1 C Routines

C routines are indicated by the structured comment /*@ ... @*/. The program bfort uses the name in the
first line (Add in this example) to generate the name of the routine for which a wrapper is being provided.

3.2 C Macros

C macros are indicated by the structured comment /*M ... M*/. Unlike the case of C routines, macro
definitions do not provide any information on the types of the arguments. Thus, the body of a structured
comment for a C macro should include a synopsis section, containing a declaration of the macro as if it were
a C routine. For example, if the Add example were implemented as a macro, the structured comment for it
would look like

/*M
Add - Add two values

2

/*@
Add - Add two values

Parameters:
. a1,a2 - Values to add
@*/
int Add(a1, a2)
int a1, a2;
{
return a1 + s2;
}

Figure 1: C code for an Add routine with bfort-style structured comment

Parameters:
. a1,a2 - Values to add

Synopsis:
int Add(a1, a2)
int a1, a2;

M*/

It is important that the word Synopsis be used; bfort and related programs (doctext and doc2lt) use this
name to find the C-like declaration for the macro.

3.3 Indicating Special Limitations

Two modifiers to the structured comments indicate special behavior of the function. The modifiers must
come after the character that indicates a routine, macro, or documentation. The modified C indicates that
this routine is available only in C (and not from Fortran). If this modifier is present, bfort will not generate
a wrapper for the routine. For example, a routine that returns a pointer to memory cannot be called from
standard Fortran 77, so its structured comment should be

/*@C
....

@*/

The other modifier is X; this indicates that the routine requires the X11 Window System. This is used
by bfort to provide an #ifdef around the call in case X11 include files are not available.

The modifiers C and X may be used together and may be specified in either order (i.e., CX or XC).

3.4 Indicating Include Files

It is often very important to indicate which include files need to be used with a particular routine. For this
purpose, you may add a special structured comment of the form /*Iinclude-file-nameI*/. For example, to
indicate that the routine requires that ‘<sys/time.h>’ has been included, use

#include <sys/time.h> /*I <sys/time.h> I*/

in the C file. A user-include can be specified as

#include "system/nreg.h" /*I "system/nreg.h" I*/

This approach of putting the structured include comment on the same line as the include of the file ensures
that if the source file is changed by removing the include, the documentation and Fortran wrappers will
reflect that change.

3

4 Command Line Arguments

To use bfort, you need only to give it the name of the files to process. For example, to process every .c
and .h file in the current directory, use

bfort *.[ch]

Command-line options to bfort allow you to change the details of how bfort generates output.
A complete list of the command line options follows. Some of these will be used often (e.g., -anyname);

others are needed only in special cases (e.g., -ferr).

The following option controls the location of the output file:

-dir name Directory for output file

In all cases, the name of the output file is the name of the input file with an f suffix. For example, if the
input file is ‘foo.c’, the file containing the generated wrappers is ‘foof.c’.

The following options control the kind of messages that bfort produces about the generated interfaces.

-nomsgs Do not generate messages for routines that cannot be converted to Fortran.

-nofort Generate messages for all routines/macros without a Fortran counterpart.

The following options provide special control over the form of the interface and the generated file.

-anyname Generate a single wrapper that can handle the three most common cases: trailing underscore, no
underscore, and all caps. The choice is based on whether one of the following macro names is defined.

FORTRANCAPS Names are upper case with no trailing underscore.

FORTRANUNDERSCORE Names are lower case with trailing underscore.

FORTRANDOUBLEUNDERSCORE Names are lower case, with two trailing underscores. This
is needed when some versions of f2c are used to generate C for Fortran routines. Note that f2c
uses two underscores only when the name already contains an underscore (on at least one FreeBSD
system that uses f2c). To handle this case, the generated code contains the second underscore
only when the name already contains one.

In addition, if -mpi is used, the MPI profiling names are also generated, surrounded by MPI_BUILD_PROFILING.

-ferr Fortran versions return the value of the routine as the last argument (an integer). This is used in MPI
and is a common approach for handling error returns.

-I name Give the name of a file that contains #include statements that are necessary to compile the
wrapper.

-mapptr Generate special code to convert Fortran integers to and from pointers used by the C routines. The
special code is used only if the macro POINTER_64_BITS is defined. It is also used to determine whether
pointers are too long to fit in a 32-bit Fortran integer. (You have to insert a call to __RmPointer(
pointer) into the routines that destroy the pointer.) The routines for managing the pointers are in
‘ptrcvt.c’.

-mnative Multiple indirects (int *** are native datatypes; that is, there is no coercion to the basic type).

-mpi Recognize special MPI [1] datatypes (some MPI datatypes are pointers by definition).

-ptrprefix name Change the prefix for names of functions to convert to/from pointers. The default value
of name is __.

-voidisptr Consider void * as a pointer to a structure.

4

-ansiheader Generate ANSI-C style headers instead of Fortran interfaces. This is useful in creating ANSI
prototypes without converting the code to ANSI prototype form. These use a trick to provide both
ANSI and non-ANSI prototypes. The declarations are wrapped in ANSI_ARGS, the definition of which
should be

#ifdef ANSI_ARG
#undef ANSI_ARG
#endif
#ifdef __STDC__
#define ANSI_ARGS(a) a
#else
#define ANSI_ARGS(a) ()
#endif

After the command-line arguments come the names of the files for which Fortran interfaces are to be
constructed.

5 Examples

This section shows the code generated by bfort with various command-line switches.

The command bfort add.c produces

/* add.c */
/* Fortran interface file for sun4 */
int add_(a1, a2)

int*a1,*a2;
{
return Add(*a1,*a2);
}

The command bfort -anyname add.c produces

/* add.c */
/* Fortran interface file */
#ifdef FORTRANCAPS
#define add_ ADD
#elif !defined(FORTRANUNDERSCORE) && !defined(FORTRANDOUBLEUNDERSCORE)
#define add_ add
#endif
int add_(a1, a2)

int*a1,*a2;
{
return Add(*a1,*a2);
}

The command bfort -ansiheader foo.c produces

/* add.c */
extern int Add ANSI_ARGS((int, int));

For a more sophisticated example, here is the result of bfort -ferr -mpi -mnative -mapptr -ptrprefix
MPIR_ -anyname -I pubinc send.c for the MPI routine MPI_Send (implemented in the file send.c, from the
MPICH implementation). The file ‘pubinc’ contains the single line #include "mpiimpl.h".

5

/* send.c */
/* Fortran interface file */
#include "mpiimpl.h"

#ifdef POINTER_64_BITS
extern void *MPIR_ToPointer();
extern int MPIR_FromPointer();
extern void MPIR_RmPointer();
#else
#define MPIR_ToPointer(a) (a)
#define MPIR_FromPointer(a) (int)(a)
#define MPIR_RmPointer(a)
#endif

#ifdef MPI_BUILD_PROFILING
#ifdef FORTRANCAPS
#define mpi_send_ PMPI_SEND
#elif defined(FORTRANDOUBLEUNDERSCORE)
#define mpi_send_ pmpi_send__
#elif !defined(FORTRANUNDERSCORE)
#define mpi_send_ pmpi_send
#else
#define mpi_send_ pmpi_send_
#endif
#else
#ifdef FORTRANCAPS
#define mpi_send_ MPI_SEND
#elif defined(FORTRANDOUBLEUNDERSCORE)
#define mpi_send_ mpi_send__
#elif !defined(FORTRANUNDERSCORE)
#define mpi_send_ mpi_send
#endif
#endif

void mpi_send_(buf, count, datatype, dest, tag, comm, __ierr)
void *buf;
int*count,*dest,*tag;
MPI_Datatype datatype;
MPI_Comm comm;
int *__ierr;
{
*__ierr = MPI_Send(buf,*count,

(MPI_Datatype)MPIR_ToPointer(*(int*)(datatype)),*dest,*tag,
(MPI_Comm)MPIR_ToPointer(*(int*)(comm)));

}

Note that the -mapptr option has caused the generated code to call routines to convert the integers in
Fortran to valid pointers. The option -ptrprefix changed the names of the routines to be MPIR_ToPointer
and MPIR_FromPointer. The option -mpi informed bfort that MPI_Datatype and MPI_Comm were pointers
rather than nonpointers. The option -ferr converted a routine MPI_Send that returns an error code to a
Fortran subroutine that returns the error code in the last argument.

6

6 Installing bfort

The bfort program is part of the PETSc package of tools for scientific computing, but can be installed with-
out installing all of PETSc. The program is available from ‘info.mcs.anl.gov’ in ‘pub/petsc/textpgm.tar.Z’.
Additional information is available through the World Wide Web at http://www.mcs.anl.gov/petsc.

Please send any comments to gropp@mcs.anl.gov.

Acknowledgment

The author thanks Lois Curfman McInnes and Barry Smith for their careful reading and vigorous use of the
bfort manual and program.

References

[1] Message Passing Interface Forum. MPI: A message-passing interface standard. International Journal of
Supercomputing Applications, 8(3/4), 1994.

[2] William Gropp. Users manual for doctext: Producing documentation from C source code. Technical
Report ANL/MCS-TM-206, Argonne National Laboratory, March 1995.

7

